On (1, 2)-realizable graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Uniquely Realizable Graphs

In the Graph Realization Problem (GRP), one is given a graph G, a set of non-negative edge-weights, and an integer d. The goal is to find, if possible, a realization of G in the Euclidian space R, such that the distance between any two vertices is the assigned edge weight. The problem has many applications in mathematics and computer science, but is NP-hard when the dimension d is fixed. Charac...

متن کامل

Games on Graphs and Sequentially Realizable Functionals Extended Abstract

We present a new category of games on graphs and derive from it a model for Intuitionistic Linear Logic. Our category has the computational flavour of concrete data structures but embeds fully and faithfully in an abstract games model. It differs markedly from the usual Intuitionistic Linear Logic setting for sequential algorithms. However, we show that with a natural exponential we obtain a mo...

متن کامل

Realizable Triples for Stratified Domination in Graphs

A graph is 2-stratified if its vertex set is partitioned into two classes, where the vertices in one class are colored red and those in the other class are colored blue. Let F be a 2-stratified graph rooted at some blue vertex v. An F -coloring of a graph G is a red-blue coloring of the vertices of G in which every blue vertex v belongs to a copy of F rooted at v. The F -domination number γF (G...

متن کامل

On strongly 2-multiplicative graphs

In this paper we obtain an upper bound and also a lower bound for maximum edges of strongly 2 multiplicative graphs of order n. Also we prove that triangular ladder the graph obtained by duplication of an arbitrary edge by a new vertex in path and the graphobtained by duplicating all vertices by new edges in a path and some other graphs are strongly 2 multiplicative

متن کامل

[1, 2]-sets in Graphs

A subset S ⊆ V in a graph G = (V,E) is a [1, 2]-set if for every vertex v ∈ V \ S, 1 ≤ |N(v)∩ S| ≤ 2, that is, every vertex v ∈ V \ S is adjacent to at least one but not more than two vertices in S. In this paper we relate the concept of [1, 2]-sets to a host of other concepts in domination theory, including perfect domination, efficient domination, nearly perfect sets, 2-packings and k-depende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(95)00069-9